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is in preparation,3' including theoretical plots of k 2 vs. A. These 
preliminary results suggest the statistical theory approach may 
well be appropriate for these systems, but the more complete 
analysis, in progress, is necessary to confirm this suggestion. 
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Introduction 

Selection rules are of such fundamental importance and 
widespread use in chemistry that it is easy to overlook that they 
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(which are essentially the symmetry rules describing the 
conditions under which the classical observable must vanish 
under the molecular symmetry) and quantum mechanical 
selection rules (which are the corresponding symmetry rules 
for the matrix elements in the quantum mechanical expressions 
describing the same process). We can illustrate this with re­
course to the familiar concept of polarizability. 
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E leads to the following classical expression for the resultant 
induced dipole moment of A: 

bn = a cE (1) 

ac is the classical polarizability tensor with elements a,}, where 
i,j are Cartesian indexes. If the molecule has a symmetry 
higher than Ci (containing only the identity), certain elements 
of the polarizability tensor will be related by symmetry, or 
vanish. Definition of these conditions lead to the classical tensor 
selection rules, which have been discussed in some detail by 
Birss1 in a monograph directed at solid state problems. The 
quantum equivalent of the above expression has the form 
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8/x = «1E (2) 

where 

and O, 5 specify the ground and an excited state of A, respec­
tively, with Hj the ('th Cartesian component of the electric di-
pole operator centered at the origin of A. es is the transition 
energy of state s relative to the ground state. The quantum 
selection rules must summarize the conditions under which the 
matrix elements in the numerator must vanish, or are related 
by symmetry. As the symmetry conditions now involve the 
symmetry properties of the states 0,5 and the operators HI, M/> 
it is not immediately obvious how the classical selection rules 
and the quantum selection rules are related. 

In this paper, this relationship is examined in detail. The 
quantum selection rules of the general matrix element products 
that arise from perturbation expansions of the interaction of 
a molecule or chromophore A (with point symmetry GA) with 
perturbing fields is developed in two stages. Using the above 
as an example, these are (1) the operator selection rules, which 
define the combinations of operators (w.iij) that are allowed 
under GA (i.e., which polarization combinations are allowed); 
(2) the state selection rules, which define those states s that 
lead to finite matrix elements for a given ground state sym­
metry. 

In this way, it is shown that the operator selection rules re­
duce to the classical selection rules of the corresponding tensor 
if the symmetry of the molecule is not appreciably reduced by 
the perturbation, and that the state selection rules are then 
additional quantum mechanical restraints on the possible in­
termediate states leading to finite contributions in the sum over 
states. In the procedure, any operator product is expressed in 
terms of a set of invariant operators, characteristics of GA-
These invariant operators may be interpreted as the quantum 
mechanical operators corresponding directly to finite classical 
observables. 

The application of the procedure to polarizabilities is rela­
tively trivial; the utility of the method is manifest, however, in 
applications to more complex perturbation expansions where 
the matrix element products may be larger or involve higher 
multipole operators. For example, in theories of induced cir­
cular dichroism,2 the products 

<0|e,y|5> (s\mk\0) (4) 

and 

(0\m\t) U\HJ\S) (s\mk\0) (5) 

where Qtj is a quadrupole operator and mk the kth component 
of the magnetic dipole operator on A, describe quite different 
mechanisms for inducing circular dichroism in A (which is 
achiral in this case). As will be discussed later, application of 
the operator selection rules to elicit the nonvanishing terms 
leads to important physical consequences, and is capable of 
predicting purely on symmetry grounds which mechanism 
should predominate. As the operator selection rules reduce to 
the classical selection rules of the corresponding tensor, the 
results of the procedure described in the first section of this 
paper may also be derived using other tensorial techniques such 
as the use of vector coupling coefficients and the irreducible 
tensor method. The state selection rules, however, are also of 
vital importance in such problems, especially if the energy 
denominators in the perturbation expansion are fairly rapidly 
convergent as the summation over intermediate states is taken 
to states of increasingly higher energy; this highlights the 
limitations of classical tensorial approaches to molecule-field 
interaction problems. 

The aim of this paper is therefore to provide the general 

chemist with a simple, unified procedure for determining the 
generalized selection rules for direct application to perturbation 
expansions of interaction processes, without the restriction of 
using purely classical procedures. For the operator selection 
rules, character tables and the concept of irreducible repre­
sentations are completely avoided, and the ambiguities for 
degeneracies that are a well-known limitation of conventional 
character tables are resolved. As the operator selection rules 
are generally significantly more restrictive than the state se­
lection rules, such a procedure has distinct advantages over the 
usual procedure of using character tables for each separate 
matrix element. 

Observables and the Totally Symmetric Projection Operator 
The definition of the operator selection rules necessitates 

some familiarity with the effects of symmetry operations on 
operators and observables, which may be developed in the 
following way. Consider the molecule or chromophore A to be 
of point symmetry GA, with the symmetry operations of GA 
denoted as R$. The index £ runs over the various operations; 
i.e., from 1 to h, where h is the order of the group. The opera­
tions R^ leave the molecule unchanged, so that symbolically 

R11A = A for all £ (6) 

This simply means that if any sequence or combinations of the 
symmetry operations R$ are performed on the molecule be­
tween the times t, t', we will not be able to perceive any mea­
surable difference in that molecule observed at time t and t'. 
It follows that any measurements made at time t must have the 
same value at time t', be it energy, polarizability, permanent 
moments, shape, orientation, and so on. Thus any observable 
(i.e., any finite measurable quantity) Ob must also be invariant 
to all operations R^; i.e., 

Rl Ob = Ob for all £ (7) 

In group theory terms, we say that any observable must be 
totally symmetric to all operations of GA, and must therefore 
be a basis for the totally symmetric representation of GA. 

The importance of this quantum mechanically is that the 
operators corresponding to such observables must also be to­
tally symmetric for all the symmetry operations. For example, 
the Hamiltonian (the operator corresponding to the observable 
energy) also satisfies eq 7. For observables such as polariz­
ability and circular dichroism, the definition of the corre­
sponding operator is not as obvious because of the intermediate 
states; it is, in fact, the problem of defining such operators 
leading to a finite classical observable that forms the basis of 
the development of the operator selection rules. It follows from 
the above that a molecular observable can only be finite or 
measurable if the corresponding operator is totally symmetric. 
(This will be proved later.) This may be generalized in the 
following way. 

Consider an operator/which correspond to an observable 
such that 

^ / = / f o r all £ (8) 

A more useful formulation of this criterion involves the pro­
jection operator P0 of the totally symmetric representation of 
GA which is simply defined as 

P° = \ t R( (9) 

For the operator/above, it follows directly from eq 8 that 

P 0 / = / (10) 

In the more general case where an operator/ does not satisfy 
eq 10, then P0 will project out any totally symmetric compo­
nent t ha t / may contain; i.e. either 
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P 0 T=/ 0 (H) 
where/0 corresponds directly to an observable (nonzero) as 
it satisfies eq 10, or 

P ° / = 0 (12) 

if there is no observable corresponding to the operator/. The 
conditions 11 and 12 form the basis of the operator selection 
rules. 

The Operator Selection Rules 

Matrix Element Products. A proper understanding of the 
application of the generalized selection rules is facilitated by 
some knowledge of how the matrix element products arise in 
physical problems. The states of A are solutions of the free 
molecule Hamiltonian HA of A such that 

HA\s)=Es\s) (13) 

The effects of radiation or static fields lead to a perturbation 
V which is generally small with respect to 7/A, so that the states 
of the perturbed Hamiltonian HA + V may be determined as 
a perturbation expansion in the free molecule states s. Con­
sider, for example, a simple perturbation by static fields, for 
which the perturbed state S is given by 

|S> = | 5 > - E - ^ ^ | 0 + . . . (14) 

where V = -yE (for a static electric field) and V = —m-B (for 
a static magnetic field), in the dipole approximation, n and m 
are the electric and magnetic dipole operators centered on A, 
and Ae,,i- = t, — ts. Any observable will now involve matrix 
elements of states S, which in turn are expanded in terms of 
the free molecule states according to eq 14 above; i.e., any 
observable reduces to matrix element products involving only 
the free molecule states of a connected by operators centered 
only on A, plus other quantities such as field strengths and 
energy denominators which are completely independent of A 
coordinates. Equation 14 applies strictly to nondegenerate 
states. Degeneracies are readily incorporated by firstly de­
termining the states s, of a degenerate set by degenerate per­
turbation theory, and then applying eq 14 to each member of 
the set with the constraint that the sum over t omits all states 
S/. As At,Sj is approximately constant for all 5,- for most per­
turbations of interest, it follows that any matrix element 
product on A may be simply summed over the relevant de­
generacy and the energy denominator extracted outside such 
a summation. 

For radiation fields, the A response may again be separated 
explicitly. The perturbation has the form3 

«im = —/* • e-1- — m - b (15) 

where e± , b are the radiative electric and magnetic fields, 
whose exact form need not concern us here as they factor 
outside of the molecular matrix elements. Higher multipole 
terms are readily incorporated into the above Hamiltonian. The 
radiative perturbation is time dependent, but the results are 
similar: the matrix element product on A may be factorized 
out, and any remaining factors will be independent of A 
coordinates. For molecule-molecule (or chromophore-chro-
mophore) interactions, it is necessary to make a separable 
chromophore assumption (in which it is assumed that there is 
negligible electron overlap between the different chromo-
phores) in order to get the matrix element products on A to 
factorize completely. The perturbation has the symbolic 
form 

V = KAB(dd) + KAB(dQ) + KAB(Qd) + FAB(QQ) + . . . 
(16) 

where KAB(Qd) is the operator representing the interaction 
of the quadrupole on A with a dipole on B, and so on. Each 
multipole operator acts only on the coordinates on the appro­
priate chromophore. Again, use of perturbation theory leads 
to an A-matrix element product, a B-matrix element product, 
and a term containing quantities independent of the coordi­
nates of A and B. 

It follows then that the observables from such perturbations 
will always reduce to terms of the general form 

F=CFAFB...Ff (17) 

where FA contains all matrix elements centered on A, FB all 
those on B, and so on, Ff the factors pertaining directly to the 
perturbing fields, and C all other quantities such as energy or 
radial demoninators. If A has point group symmetry GA, it 
then follows that group theory will restrict the possible com­
binations of operator and state symmetries that give finite 
values of the matrix element product FA. 

The derivation of the operator selection rules proceeds 
through an important theorem which appears complex, but is 
actually conceptually simple and equally simple to apply. It 
may be stated in its most general form as follows. 
The operator selection rule theorem. 

If 

FA = E E K | P ? K > MI^SI ••• in-k;) 
a y,X... 

and 

P° L TI K = E Il Kb 

a a b ex 

then 

/7A = L I (o'7\P\b\r{) {r{\P'2
h\ . . . \P'$\o'y) (18) 

b Y, \ , . . 

P0 is the projection operator of the totally symmetric repre­
sentation defined in eq 9. The basis functions for A are assumed 
bases for the irreducible representations of GA such that r{ 
transforms as the Xth row of they'th irreducible representation 
TJ. The meaning of the summation over a will become clearer 
later, but allows for flexibility when linear combinations of 
matrix element products differing only in the nature of the 
operators appear in a certain physical problem. The summation 
over 7,X,. . is over all degeneracies. The product of the oper­
ators is defined in such a way that 

R^UPc) = U(RiK) (19) 

It is important to note that as the operators generally connect 
different states, the above products are not necessarily com­
mutative so that the order should be carefully retained. 

To understand the meaning of this theorem, we can first 
ignore the sum over a, and treat each matrix element product 
separately. The theorem then slates that we can replace the 
corresponding operator product (derived from simply ignoring 
all the wave functions) by its totally symmetric projection. If 
this projection vanishes, we have the situation of eq 12 where 
the matrix element product does not correspond to an ob­
servable, and vanishes. If the projection is finite, then the 
projected operator product satisfies eq 10 and corresponds to 
a finite observable. In particular, if 

P° TI Pa = E TI Pa (20) 
a b <x 

then the initial matrix element product may be replaced by the 
sum of matrix element products formed by substituting the 
ordered wave functions back into each term of the projected 
operator product sum. This will then lead directly to an ob­
servable. Noting that the projected operator product sum 
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satisfies eq 11, it follows that it is totally symmetric, and we 
shall therefore refer to it as an invariant operator. Such an 
invariant operator corresponds directly to an observable, and 
any operator product will project under P0 (and thus may be 
replaced by) one of the invariant operators characteristic of 
the point group, or zero. 

In this way, we have generalized the simple procedure de­
scribed earlier (eq 10-12) so that each invariant operator has 
a direct one-to-one correspondence to a classical observable. 
Furthermore, the invariant operators constitute the simplest 
set of operator product sums that are linearly independent and 
cannot be further reduced by symmetry. Any of the original 
matrix element products that are related by symmetry will 
manifest this interdependence in leading to projections in terms 
of the same invariant operators. The isomorphism of the 
classical observable and the invariant operator implies that 
they will be tensors of the same rank and type, and thus they 
must have analogous symmetry properties. It follows that the 
operator selection rules are, in effect, the exact quantum an­
alogue of the classical selection rules for the macroscopic 
tensorial observable. 

We return now to the sum over a. This may be used in cer­
tain physical problems (for example, when the molecule is 
averaged over all orientations with respect to the perturbing 
field) where the observable of interest is a simple sum of matrix 
element products which differ only in the nature of the oper­
ators, and have the same coefficients. This will be clarified in 
a later section, but suffice it to say at this stage that the pro­
jection of such a sum will generally be a sum of invariant op­
erators. 

Proof of the Theorem. An understanding of the theorem does 
not require a detailed understanding of the proof. We shall, 
however, include the proof here for completeness, and it may 
be developed from the following lemmae. 

Lemma 1. 2\ |r{) (r{\ is a basis for the totally symmetric 
representation of GA. 

Each operator R^ of G,\ is unitary, so that if the set of de­
generate functions \r{\ span the space of TJ, then the set |r{{} 
span the same space, where 

where 

Then 

K 1 ) = Rs\r{) 

x n { Xf. 

= Z H1) HI 

= I H ) <r{\ 
\ 

Lemma 2. Sx (r{\Op\r{) = 2X (r{\P0Op\r{). 
The proof in this case follows the same lines: 

P° Z (r{\Op\r{) = -TE (r^R^OpH^ 
X ft % Xj 

= Z<ri(\{r,R(Op\ri.) 

= Z ir{\P°Op\r{) 
x 

The proof of the final theorem in the text now follows from 
noting that 

FA = T, Z {o'y\p
aM) Mi-pfi... i n K > 

a 7 , X v • • 

= Z {o\\Op\o\) 

Op = Z P"(ZH) (r{\) PH- • •) Pl 

Using lemma 2 for the operator defined above, and noting from 
lemma 1 that each projection operator sum in round brackets 
must transform as the totally symmetric representation of GA, 
it follows that if 

p^n^^En^ i = i b a = l 

then 

P0Op = z 
b 

(ZH) Ml) p2
b (. 

• ) . 

This is the required result. 
Generalizations. The application of the operator selection 

rules is not merely restricted to A. FB must satisfy similar 
conditions under the symmetry of B, and Ff must satisfy the 
selection rules under the symmetry of the charge system 
leading to the field quantities about the chosen origin. In the 
latter case, the origin at which the field quantities are evaluated 
must also be used as the origin of the point group of the charge 
distribution. An example of this is the case where the ligand 
field about a central metal ion is represented by its electric field 
and the derivatives thereof at the central ion; the field products 
arising from such perturbations must be totally symmetric 
under the operations of the symmetry group of the ligand 
field. 

Another generalization that is important in processes such 
as Raman scattering or vibronic coupling relates to the ap­
pearance of vibrational matrix elements in the product for A. 
If simple perturbation theory is used, the matrix element 
products may be written in the form 

FA = F%F\ 

where F% is the matrix element product depending only on the 
electronic coordinates of A (for a fixed nuclear configuration), 
and F^that product depending solely on nuclear coordinates. 
The operator selection rules may then be applied to F% and P^ 
separately, as the symmetry operations of GA may be applied 
either to all the electronic coordinates or all the nuclear coor­
dinates. 

Transformations of Operator Products 
The beauty of expressing perturbation expansions in terms 

of tensorial operators such as multipole moment operators lies 
not only in their generality, but also in their simple transfor­
mation properties under point symmetry operations. This may­
be illustrated with reference to the quadrupole moment oper­
ator, which may be defined for our purposes as 

!ap • eafS (21) 

where a,f3 run over the Cartesian operators x, y and z, and e 
is the electronic charge. (The general definition may be taken 
to be Q = err, where r is the Cartesian vector r = xi + y\ + zk 
and i, j , k are unit vectors along the respective Cartesian axes.) 
The application of R^ to this particular quadrupole operator 
may be written 

RiQ.fi = e(Ria){R,p) (22) 

The transformation properties of the electric multipole oper­
ators may thus be found directly from a knowledge of the 
transformation properties of the Cartesian operators x, y, z. 
These may be determined in the following way. Letting i. j , k 
be the unit vectors in the x, y, z directions as above, the oper­
ation of R^ to these unit vectors may be written as 

R^i = o«xi + flj.j + a* .k (23) 

RiQ.fi
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Rli = fl«,vi + a].y\ + ay:k (24) 

/?£k = a?,i + a^j + a::k (25) 

The a-^ are simply the direction cosines of the transformed 
basis vectors relative to the original set. Returning to the 
quadrupole operator, we have 

K«G«3 = e ( £ 4« «) ( !>§« '* ' ) 

= L fl?,4fl|8'0sj' (26) 

5, 5', etc., also run over the Cartesians x, y, z. This is readily 
generalized to any electric multipole product. For example, 
if n = ex is the electric dipole operator, 

= H aisa^atyWiQ/j'y (27) 
6,6',6" 

Electric multipole moment operators are basically defined 
in terms of r, which is a polar vector. The transformation 
properties of such a vector are essentially those of a directed 
arrow (e.g., antisymmetric to inversion). The magnetic dipole 
operator m, however, is proportional to a vector product of two 
polar vectors; viz. r X p, where r is the Cartesian vector from 
the moment origin to the linear momentum vector p. As each 
of these polars separately changes sign under inversion, the 
magnetic dipole moment operator is symmetric, and is referred 
to as an axial vector. The cross product has the properties of 
a current loop, so that the transformation properties of the 
magnetic moment are not those of the directed arrow, but 
rather those of the current loop from which it derives. The di­
rection of the vector m is determined from that of the trans­
formed current loop using the usual right-hand rule. These 
transformation properties are, however, simply related to those 
of a polar vector in that 

R^mn = ( -n 'Lfl la/Mj (28) 
6 

where / = 0 if R^ is a proper rotation, and / = 1 if R% is an 
improper rotation. Polar and axial vectors transform in the 
same way for proper rotations, but in an opposite sense for 
improper rotations. 

Any operator comprising tensorial operators (axial or polar) 
may thus be determined directly if the set of direction cosines 
alp is known for the basis vectors for each symmetry operation 
of the relevant group. These quantities are not generally 
available, and have therefore been conveniently tabulated in 
the Appendix for the finite point groups. For the operator se­
lection rules, we will see that these tables are more useful and 
complete than the conventional character tables. 

Applications of the Operator Selection Rules 

One of the areas where these rules have proved extremely 
useful to this author is the field of circular dichroism, which 
is essentially the interaction of a molecule or chromophore with 
circularly polarized radiation fields (or, alternatively, with 
chiral photons). The examples to be discussed in this section 
are therefore drawn from this general area. It is stressed, 
however, that the methods are of widespread application, and 
it is hoped that they will prove as useful in other areas as they 
have been to this author in theories of circular dichroism. 

Natural Circular Dichroism. The operator selection rules 
may be used to determine which of the point groups can lead 
to natural circular dichroism (CD). The expression for the CD 
of the 0 to s transition of a molecule A (averaged over all ori­
entations of the molecule relative to the radiation field) has the 
form 

/?o* = EIm<0|/ i a | s> {s\ma\0) (29) 
a 

We shall in particular consider the groups C4 and S4. It is 
worth discussing briefly how the selection rules could be de­
termined for these cases using conventional character tables.4 

Applying the usual rules for each matrix element (i.e., that the 
integrand of each matrix element must be totally symmetric) 
and assuming for simplicity that the ground state is totally 
symmetric, then the molecule will be CD active if there exists 
a state s such that 

Vs ® T(jia) c r 0 

and 

Ts®T(ma) c T 0 

where T(na) is the irreducible representation generated by na, 
T0 is the totally symmetric representation, and so on. For a = 
z (the symmetry axis), the A to A transition will be CD active 
for C4, but not for S4. For the A to E transition, however, the 
character tables suggest that this transition is potentially ac­
tive for both point groups. This is simply the result of the 
character tables containing incomplete information for de­
generate representations. 

We now apply the operator selection rules directly, and thus 
illustrate how the tables in the Appendix contain all the in­
formation we require. The second condition of eq 18 is applied 
directly, so that for C4, 

P 0 I I I ^ = P0(M*WX + Hymy + n2mz) 
a a 

= (v-xmx + nymy + fizm2) 

The operator product corresponds directly to an observable. 
This should clarify why the sum over a was incorporated into 
the general theorem. Note, however, that P0 acting on the 
operator product sum will not necessarily give a single in­
variant operator, but must give a sum of invariant operators 
(or zero) as we shall presently. For S4, it follows immediately 
that 

P0 L Hamtt = 0 
a 

so that S4 is unambiguously an achiral point group. There can 
be no CD activity for any state. 

To find the invariant operators, the projections of the sep­
arate matrix element products must be determined. For C4, 

P°(ixam0) = 0 a jt /3 

P°(MxWx) = P°(nymy) = 1I2(^mx + nymy) 

P°(jxzmz) = piZmz 

so that the invariant operators are xh(y.xmx + \iymy) and \izmz. 
For S4, 

YQ(namij) = 0ay±l3 or a = /3 = z 

P°(nxmx) = -P°(nymy) = y2(iixmx - \iymy) 

The only invariant operator is ]li(nxmx - \xymy). Although 
this corresponds potentially to an observable, it does not cor­
respond to the observable for CD, which requires an operator 
product of the form ^li(^xmx + ^ymy). 

The above is a simple example, but it highlights some sig­
nificant features: (1) Conventional character tables are in­
adequate in dealing with operator or state degeneracies. (2) 
Irreducible representations do not enter the selection rules. (3) 
The operator selection rules are generally extremely restrictive; 
for the above groups, the general tensor jtm has no finite off-
diagonal elements. (4) The number of invariant operators is 
generally significantly smaller than the possible number of 
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operator products. (5) The projection of a single operator 
product will always be zero or generate an invariant operator 
(multiplied by at most a numerical constant), but the projec­
tion of an operator product sum may be zero or generate a 
linear combination of the invariant operators. (6) The invariant 
operators are explicitly determined through a purely algebraic 
procedure. The manipulative algebra increases with the order 
of the operator products from which the invariant operators 
are generated, but the method remains conceptually simple, 
and general. 

Induced Circular Dichroism. We conclude this section with 
an example from the recent literature comparing two possible 
dynamic coupling mechanisms for the induction of CD in an 
achiral chromophore. No attempt will be made here to detail 
the mechanisms, as this is fully discussed elsewhere.5'6 Suffice 
it to say that the CD appearing at the magnetic dipole allowed 
0 to 5 transition of the achiral chromophore A for the two 
mechanisms give rise to eq 4 and 5 as the relevant matrix ele­
ment products on A. The product of eq 4 arises from first-order 
perturbation theory, but involves a higher multipole transition 
moment. The product of eq 5 is purely dipolar, but comes from 
second-order perturbation theory. The two mechanisms may 
therefore be competitive. 

It is possible, however, to differentiate between them purely 
on symmetry grounds. Consider the following possible sym­
metries for the achiral chromophore. (These symmetries arise 
commonly for the metal ion chromophore in metal com­
plexes). 

Ot1D^f1D-IdCi11C-Iv 

Each group is a subgroup of Of, with decreasing symmetry 
toward Ci1-. Both of the above products have the transforma­
tion properties of the product (a/3my), which may be sum­
marized as follows: 

All groups: P°(a/3w7) = 0 
if any of a, /3, y are the same (30) 

Of1: P°(xym:) = P°{yzmx) = P°(zxmy) 
= -P°(yxm:) = -P°{zymx) 

= -P°Uzm,) = V6[(xy -yx)m: 

+ (yz - zy)mx + (zx - xz)my] (31) 

D411, Dld, C4r: P°(xym:) = - P ° 0 * m r ) 

= ]h[(xy -yx)mz] 

P°(yzmx) = —P°(xzmv) = xk\yzmx — xzmy] 

P°(zxmy) = -P°(zymx) = y2[zxmy - zymx] (32) 

C2,-: P°(a(3my) = [a0my] (33) 

Thus there is only one invariant operator for Of1, three for D4/,, 
Did, a nd C4,-, and six for C2,- The products are not necessarily 
commutative as they may refer to transition moments between 
different states. 

Consider first the mechanism described by eq 4. The qua­
druple tensor element Qalj transforms as a/3 so that the overall 
operator product transforms as a(3my as above. However, as 
Qap is an operator within a single transition moment, it follows 
from the symmetric nature of the quadrupole tensor that Qa$ 
= Qjja so that Qaj — Q^n = 0. The above eq 30-33 then sim­
plify to the following: 

0,,: P°{Q^my) = 0 for all a,/3, y (34) 

D4h, D2d, C4,: P°(Qxymz) = 0 

P0(2,,-«,-) = P°(Qzymx) = -P°(Qx:my) 
= -P°(Q:Xmy) = !/2(Qy:mx - Qxzmy) (35) 

C2,: P°(0„«m7) = P°(Grf„w7) = Qa$my (36) 

The important feature of the above is that all terms are zero 
for Of1, so that this mechanism cannot contribute to the CD 
induced in A for any magnetic dipole allowed transition. For 
D4h, Did, ar)d C4,, only transitions for which the magnetic 
dipole transition moment is x or y polarized may become CD 
active through this mechanism. We return to this anon. 

For the purely dipolar mechanism of eq 5, there is no com-
mutativity for the a/3 products, as the individual operators a,/3 
appear in different matrix elements. The transformation 
properties are therefore precisely those of eq 30-33. It follows 
that the magnetic transition moment of the CD-active tran­
sition may have any polarization. 

These deductions may be directly compared with experi­
mental results. It is found that qualitatively comparable CD 
bands appear for all polarizations of the magnetic transition 
moment irrespective of the symmetry of the achiral chromo­
phore.7 This strongly supports the dipolar mechanism, and 
illustrates the potency of the procedure for somewhat more 
complex problems. 

State Selection Rules 
The main thrust of this work has been directed at the oper­

ator selection rules for the simple reason that they are usually 
the most restrictive. The state selection rules, however, have 
important additional consequences. 

The difficulty of defining the state selection rules as precisely 
as those for the operators stems from the simple fact that the 
wave functions for a molecule have no direct correspondence 
with classical observables in the way that an invariant operator 
has. The only restrictions arise from their being eigenfunctions 
of an invariant operator (the Hamiltonian), so that they must 
transform as one of the irreducible representations of the point 
group of the molecule. The wave function may thus be specified 
by the irreducible representation for which it forms a basis, but 
any further specification requires expansion in terms of some 
chosen basis set in such a way as to minimize the energy. 

The state selection rules are therefore defined as the usual 
conditions for nonvanishing matrix elements—with the im­
portant simplification that only the components of the invariant 
operators need be tested; i.e., for the matrix element 

(a\P\b) 

the state selection rule is simply 

r a ® r^® r* c r 0 (37) 
where Ta is the irreducible representation generated by a, T0 

is the totally symmetric representation, and so on. These 
conditions may be readily determined using conventional 
character tables; it is, in fact, for such problems involving 
quantities of unspecified functional form that conventional 
character tables are most studied. If the functional forms of 
the wave functions (written ^2, ^5) are known, then we could 
generalize the state selection rules to 

(a\P\b) = f [ P ° ( ^ b ) ] c l T (38) 

i.e., only the totally symmetric projection of the integrand can 
contribute to the final matrix element. 

The importance of the state selection rules is best illustrated 
with a particular example. Consider the matrix element 
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Table I. Transformation Properties of (xyz) for the Finite Point Groups 

Operation Transformation of (x,y,z) C1 Cs C1 C2 C3 C4 C5 C6 D2 Di D4 Ds D6 C2, C3c C4, 

C2(IOO) 
C2(OlO) 
C2(OOl) 
C2OlO) 
C 2 ( I lO) 
C2UOl) 
C2(IOl) 
C2(OiD 
C2(OU) 
C2 (IVlO) 
C2(IVlO) 
C2(VlIO) 
C2 (VHo) 

('f-j»: 
/ 7T X 
Is — c — 
\ 10 10 

C2Is-C-O 
* 10 10 

C2 f i — c - 0 
V io io 

C3(OOl) 
C3

2 (001) 
C 3 ( I U ) 
C3

2LHl) 
C 3 ( H l ) 
C3MHl) 
C 3 ( IH) 
C 3

2 O H ) 
C 3 (HH 
C 3

2HH) 
C4(IOO) 
C4

3 (100) 
C4(OlO) 
C4

3 (010) 
C4(OOl) 
C4

3 (001) 

C5(OOl) 

C52(001) 

C5
3 (001) 

C5
4 (001) 

C6(OOl) 
C6

5 (001) 
*S3(001) 
*S3

5(001) 
*S4(100) 
*S4

3(100) 
*S4(010) 
*S4

3(010) 
*S4(001) 
*S4

3(001) 

*S5(001) 

*S5
7(001) 

*S5
9(001) 

.S6(OOl) 
*S6

5(001) 
*S6(111) 
*s6

5oii) 
*S6(H1) 
*S6

5(H1) 
»S6(11_1) 
*S6

5(1H) 
*s6(iin 
*S6

5(111) 
*S8(001) 
*S8

3 (001) 
.S8

5COOl) 

(-x + VIy)Il 
(-x - VIy)/2 
(X + Vp)/2 
(x - Viy)/2 

X TT 
—c — x + s—y 

5 5 

-c — x — s — v 
5 5-

c — x + c — y 
10 10 

s — x-c — y 
10 10 

(-x + VJy)/2 
(-x - VJy)/2 

y 

-y 

y 
-y 
-y 
y 
-y 

(VJx + y)/l 
(-VJx+y)/2 
(VJx - y)/l 
(-VJx-y)/2 

TT TT 
s — x + c — y 

5 5^ 

-s — x + c — v 
5 5 ' 

C X • 

10 
•s — y 

10 ' 

—c — x — s — y 
10 10 

( - V I x - > ' ) / 2 
(VIx - y)/2 

-y 

—z 
y 
X 

X 

—z 
Z 

y 
-y 

TT TT 
S X + C y 

10 10 
TT TT 

—c — x + s — y 
5 5 
TT TT 

— c — x — s — y 
5 5 

TT TT 
s — x — c — y 

10 10 
(x + VJy)/2 
(x - VJy)/2 
(-x + VJy) 12 
(-x - Viy)/2 
—x 
—x 
-z 
Z 

y 
-y 

TT TT 
s — x + c — y 

10 10 
TT TT 

—c — x — s—y 
5 y 
TT , TT 

—c—x+s — v 
5 5 ' 

TT TT 

s — x — c — y 
10 10 

(x + VJy)/2 
(x - VJy)Il 
—z 
-y 
y 
Z 

y 
—z 
-y 
Z 

(x+y)/V2 
(-x+y)IVl 
(-x-y)lV2 

X 

— z 
Z 

-z 
y 
y 
—x 
x 

TT TT 
-c — x + s — y 

10 10 
TT TT 

—s—x — c—y 
5 5 ^ 

TT TT 
s—x—c—y 

5 5 
TT TT 

c — x-Vs — y 
10 10 

(-VJx + y)/2 
(VJx + y)/l 
(-VJx-y)ll 
(VJx -y)/l 
Z 

- z 
-y 
-y 
—x 
X 

TT TT 
~C X + S V 

10 10' 
TT TT 

S — x — c—y 
5 5 ' 

TT TT 
~s - x - c -y 

5 5 
TT TT 

c — x + s — y 
10 10 

( -Vlx+> . ) /2 
(VIx +y)/2 
—x 
—z 
—z 
X 

Z 

X 

Z 

~X 
( - x + y ) / V 2 
(-x-y)/V2 
(-x+y)lV2 

-y 
—x 

-y 
y 
X 

— X 

Z 

Z 

Z 

Z 

Z 

Z 

—z 
—z 

-y 
y 
X 

—X 

- z 
- z 

- z 

—z 

-z 

—z 

—z 
—z 

-y 
—x 
X 

-y 
—X 

y 
X 

y 
—z 
—z 
—z 

0 0 0 0 
0 

0 0 0 0 0 

0 
0 
0 

0 

0 

0 

0 
0 
0 
0 
0 

0 

0 

0 

0 
0 
0 

0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

0 

0 

0 

0
0

0
0
 

0 
0 

0 
0 
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Table I (Continued) 

Operation Transformation of (x.y.z) C1 Cs Cj C2 C4 C$ Cf, Di Dy O5 D6 C2 , C3, C4, 

' S 8
7 (001) 

.S1 0(OOl) 

*S,o3(001) 

*S,0
7(001) 

' S 1 0
9 (001) 

*S1 2(001) 
' S 1 2

5 (001) 
»S,2

7(001) 
* S i 2

n (001) 
*cr (100) 
*a(010) 
*o- (001) 
*er Cl 10) 
*CT(110) 
tu (101) 
*CT (101) 
*cr (Oil) 
*CT (OU) 
*a(V3io) 
*<r(VTl0) 
'CT(IvIO) 
'(T(IVlO) 

*a I c - s — 0 
V 12 12 / 

*<7 (c — S—0) 
V 12 12 / 
/ X X \ 

* a (.s — f — 0 ) 
V 12 12 / 

*a \s — c — 0 
V 12 12 / 

'CT ( c - S - 0 ) 

V 8 8 / 

V 8 8 / 

V 8 8 / 
/ T T 7T \ 

V 10 10 / 
/ TT X \ 

*tr I c — s — 0 ) 
V 10 10 / 

"(5H0) 

( * - > • ) / V l 
TT TT 

C — Af + S — V 

5 5 
X IT 

— 5 X + C V 

10 10 

—J — x - c — y 
10 10 

X X 
c r * - s - y 

5 5 
(VXx+/y)/2 
( - V l * + > ' ) / 2 
( - V l * - .y)/2 
( V l v - . y ) / 2 
-Af 

X 

Af 

->' 
>" 
— 1 

Z 

X 

X 

(-x - VIy)Jl 
(~x + VJy)/2 
{x - Viy)/2 
(x + VJy)/2 

(-VJx-y)/2 

(-VJx+y)/2 

(VIx-y)/2 

(Vix + y)/2 

(-x-y)/V2 

(-x+y)/V2 

(X-V)IVl 

(x+y)/Vl 

X X 
—c — x — s—y 

5 5^ 
X X 

—c — x + s—y 
5 5 

X X 
i A f - C V 

10 10-
X X 

j — x + c — y 
10 10 

(x + y)jV2 
X X 

—i — Af + C — y 
5 5 
X X 

—c — x — s — y 
10 10 

X X 
c — A f - J — y 

10 10 
X X 

5 - A : + <? -y 
5 5 

(-x + VJy)/2 
(-x-VJy)/2 
(AT - v l y ) / 2 
U + VTy)/2 
y 
-y 
y 
—x 
X 

y 
y 
—z 
Z 

(-Vjx+y)/2 
(Vix_+y)/2 
(-V3x-y)/2 
(VJx-y)/2 

(-x + VJy)/l 

(x + VJy)/2 

(-x - VIy)/2 

(x - Vly)/2 

(-x + y)/Vl 

(x+y)/V2 

(-x-y)/V2 

(x-y)/V2 

X X 

—s — x + c—y 
5 5^ 

X X 
s—x+c—y 

5 5 
7T 7T 

— (T A" — S V 

10 1(T 
7T 7T 

r —x — s — V 
10 10^ 

— z 

—2 

—z 

—z 

—2 

— z 
— Z 

— 2 

— 2 

Z 

Z 

— 2 

2 

Z 

—x 
X 

-y 
y 
2 

Z 

Z 

Z 

Z 

2 

Z 

2 

Z 

2 

Z 

2 

Z 

Z 

Z 

Z 

0 
0 0 

0 
0 

0 
0 

product of eq 5. There are two important features arising from 
the explicit perturbation expansion which have been omitted:2 

(1) the sum over the intermediate states t (the observable being 
measured at the transition energy of a specified state 5); (2) 
an energy denominator containing the factor Ae,., = t, — ts 
where et, ts are the transition energies of states / and s, re­
spectively. For the matrix element product 

(Oln^t) (t\nu\s) (s\m-,\0) 

the state selection rules summarize the restrictions on the in­
termediate state / for given symmetries of the ground 0 and 
excited s states. These are 

(0 r ° ® r ' ® r « c r ° 
(ii) r j ® n ® r^ c r0 

(iii) r< rmT c r0 (39) 
Note that the operator selection rules have already restricted 
the a(3y to certain combinations (xyz and permutations thereof 
for the groups discussed earlier) so that the symmetry of t will 
be severely restricted. The sum over states is then confined to 

those satisfying the state selection rules (eq 39) for the in­
variant operators determined from the operator selection rules. 
If this were the only benefit of the generalized selection rules, 
we would still have quite a problem in summing over the lim­
ited set of states of the appropriate symmetry. However, the 
hitherto neglected energy denominators in many perturbation 
expansions may force a convergence in the overall contributions 
as we go to higher energy intermediate states. For example, 
if the energy denominator contains factors of the form &tts = 
e, — «5, then the major contributions will come from states t 
for which Ae,s « es =* e, (the close levels approximation). For 
some problems, only one intermediate state need be consid­
ered.2 

In fact, use of the combination of the operator and state 
selection rules, coupled with a close examination of energy 
denominators and the nature of the particular problem, fre­
quently simplifies a seemingly complex perturbation expansion 
to a few terms connecting only a small number of states. This 
can give much more insight into a molecular response property 
than an approach based purely on classical tensorial observ-
ables, and may in turn be utilized for assigning molecular states 
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Cse C(,v CjhCji, C4/, Cu, C(,k DiJ, Du D41, D6h Dld DU Did Did D6d S4 S6 S8 Td O Oh 

O 

O 
O 
O 

O 
O 

O 
O 
O 
O 
O 

O 
O 

O 
O 
O 

O 
O 

O 
O 
O 
O 
O 
O 

O 
O 
O 
O 
O 
O 
O 
O 
O 

and investigating the nature of possible intermediate states 
themselves. 

Appendix 

The transformation properties required in the application 
of the operator selection rules are presented in Table I. They 
are given in the form 

Ri-x = axxx + axyy + axzz 

with similar expressions for y and z (see eq 23-25 in the main 
text). Those for the magnetic dipole components are readily 
found from the above using eq 28; i.e., 

R^mx = (-\)>(axxmx + axymy + axzmz) 

and so on, where / = 0 for proper rotations and / = 1 for im­
proper rotations (marked with an asterisk for convenience). 
The coefficients are given numerically where possible, except 
for cases where the trigonometric functions do not reduce to 
simple fractions. 

The operations themselves are defined explicitly by the 
argument (abc) where the rotation axis (and the normal to the 

reflection plane for reflections) passes through the origin and 
the point x = a, y = b, z = c. Negative coordinates are denoted 
by a bar; i.e., (abc) =_(—a,b,c,)- It is immaterial whether the 
set Cn(abc) or Ck„(abc) is specified, provided that the whole 
class (k = 1 , . . . , n) is generated from the same sense of axis 
(i.e., either (abc) or (abc), but not a mixture). This is essen­
tially equivalent to saying that the sense of rotation is imma­
terial, as it will generate all the transformations within the 
class. The final results will be summed over these class ele­
ments, and are therefore independent of the sense of rota­
tions. 

The trigonometric functions are abbreviated as 

/k-K\ kir 
cos ( — 1 = c — = 

ViV/ N 

. /kir\ kit 
sin (— = ^ — = 

V/V/ TV 

N 
.ICK 

N 

The table is structured so that each vertical column corre­
sponds to a particular point group and each horizontal row to 
a particular operation. An entry 0 indicates that the point 
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group in whose vertical column it lies has the operation given 
horizontally at the left-hand side of the table, with the relevant 
transformation properties. The totality of entries in a vertical 
column thus corresponds to the total set of symmetry opera­
tions of that particular point group. 
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Abstract: The properties of the cyclization of vinyl azide to r-triazole are studied using the STO-3G minimal basis set to con­
struct an energy hypersurface. Then, a split valence 4-3IG basis set is used for the geometries found for the transition state, 
vinyl azide, and r-triazole. The activation energy, £a, is 32.9 kcal/mol in STO-3G and 41.4 kcal/mol in 4-3IG; the heat of re­
action is -10.8 kcal/mol in 4-3IG. Various limited configuration interactions (Cl) were employed for points around the SCF 
transition state but the new transition state differed only slightly. The various properties calculated, along with localized mo­
lecular orbitals, permit the reaction to be classed as a 1,5-dipolar electrocyclic reaction. In addition, using the geometry of the 
vinyl azide transition state as a start, a similar transition state was found for the isoelectronic species, protonated azidoazo-
methine. The activation energy in STO-3G is 42.9 kcal/mol, and is to be compared with 12.3 kcal/mol previously found for 
the cvclization of neutral azidoazomethine. 

The thermolysis or photolysis of vinyl azides 1 give azir-
ines 3 as products or as intermediates for final products.1 Three 
mechanisms for the formation of azirines have been proposed,2 

the first of which, formation of a vinyl nitrene 2a, has been 

H x / ^ 
H, 

1 

H / b x H 

2a 

& 

I N 

•tfSr* 
2b 

rk„„N Y;^ ̂N 
H-^NH 

2c 

excluded on the basis of kinetic results which show that vinyl 
azides give moderate activation energies (26-30 kcal/mol) and 
low entropies of activation (—3 to +5 eu).3 This is in contrast 
with the decomposition of aryl azides to nitrenes (A£ a = 39 
kcal/mol, AS* = 19 eu for phenyl azide).4 Kinetic evidence 
has not been conclusive, however, in choosing between the two 
remaining proposed mechanisms. One would have the for­
mation of otriazole 2b which would further lose "N2 to give 
azirine 3. The other one would have a concerted process 2c 
wherein the loss of N2 is simultaneous with ring closure. 

The present work is an ab initio theoretical study of the first 
part of the second proposed mechanism, closure of vinyl azide 
to u-triazole. Evidence for the involvement of this intermediate 
comes from the cyclization of diazopropene 4, which is iso­
electronic with vinyl azide 1. An intermediate has been de­
tected4 in the formation of product 1/Z-pyrazole 5 and has been 
attributed4 to 3//-pyrazole 6. The kinetics of this reaction have 
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6 
been studied3 and found to be similar to those for vinyl azides 
(E.d = 32.0 kcal/mol, AS* = -3 .6 eu). 

Additional interest as to the involvement of r-triazole comes 
from the findings that vinyl azides possessing an acidic terminal 
H atom undergo a facile base-promoted cyclization to 
triazoles.5 
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Ts .H C = C 

X - 8 ^ / \ 
H 

In addition to the vinyl azide cyclization of this study, the 
geometries found for vinyl azide and the transition state are 
then used as starting points to study the closing of protonated 
azidoazomethine 7 to protonated tetrazole 8. This expectation 
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7 
of similar transition states has been used to explain the stability 
of the azide form of substituted azidoazomethines in acid so­
lution. Neutral guanyl azide 9 cyclizes spontaneously to 5-
aminotetrazole6 but the salts [ (NH 2 ^CN 3 ] + X~ have the open 
azide structure. 
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